∽ Baccalauréat S Nouvelle-Calédonie novembre 2006 ∾

EXERCICE 1 4 points

Commun à tous les candidats

Une maladie est apparue dans le cheptel bovin d'un pays. Elle touche $0.5\,\%$ de ce cheptel (ou 5 pour mille).

- 1. On choisit au hasard un animal dans le cheptel. Quelle est la probabilité qu'il soit malade?
- **2. a.** On choisit successivement et au hasard 10 animaux. On appelle *X* la variable aléatoire égale au nombre d'animaux malades parmi eux. Montrer que *X* suit une loi binomiale dont on donnera les paramètres. Calculer son espérance mathématique.
 - b. On désigne par A l'évènement « aucun animal n'est malade parmi les 10 ».

On désigne par B l'évènement « au moins un animal est malade parmi les 10 ».

Calculer les probabilités de A et de B

- **3.** On sait que la probabilité qu'un animal ait un test positif à cette maladie sachant qu'il est malade est 0,8. Lorsqu'un animal n'est pas malade, la probabilité d'avoir un test négatif est 0,9. On note T l'évènement « avoir un test positif à cette maladie » et M l'évènement « être atteint de cette maladie ».
 - a. Représenter par un arbre pondéré les données de l'énoncé.
 - **b.** Calculer la probabilité de l'évènement T.
 - c. Quelle est la probabilité qu'un animal soit malade sachant que le test est positif?

EXERCICE 2 5 points

Candidats n'ayant pas suivi l'enseignement de spécialité Les parties A et B sont indépendantes

On considère l'équation (E)

$$z^3 - (4 + i)z^2 + (7 + i)z - 4 = 0$$

où z désigne un nombre complexe.

Partie A

- **1. a.** Montrer que (E) admet une solution réelle, note z_1 .
 - **b.** Déterminer les deux nombres complexes *a* et *b* tels que, pour tout nombre complexe *z* on ait :

$$z^3 - (4+i)z^2 + (7+i)z - 4 = (z-z_1)(z-2-2i)(az+b)$$

2. Résoudre (E).

Partie B

Dans le plan muni dun repère ort.honormal direct $(O, \overrightarrow{u}, \overrightarrow{v})$, on considère les trois points A, B et C d'affixes respectives 1, 2+2i et 1-i.

- 1. Représenter A, B et C.
- 2. Déterminer le module et un argument de $\frac{2+2i}{1-i}$. En déduire la nature du triangle OBC.

- 3. Que représente la droite (OA) pour le triangle OBC? Justifter votre affirmation.
- **4.** Soit D l'image de O par la rotation d'angle $-\frac{\pi}{2}$ et de centre C. Déterminer l'affixe de D.
- 5. Quelle est. la nature de OCDB?

Exercice 2 5 points

Candidats ayant choisi l'enseignement de spécialité

Le plan est muni d'un repère orthonormal direct $(0, \vec{u}, \vec{v})$. (unité 1 cm). On construira une figure que l'on complétera au fur et mesure.

- 1. Soit A le point d'affixe 3, et r la rotation de centre O et d'angle $\frac{\pi}{3}$. On note B, C, D, E et F les images respectives des points A, B, C, D et E par la rotation r. Montrer que B a pour affixe $\frac{3}{2} + \frac{3\sqrt{3}}{2}$ i.
- 2. Associer à chacun des points C, D, E et F l'une des affixes de l'ensemble suivant

$$\left\{-3; -\frac{3}{2} + \frac{3\sqrt{3}}{2}i; \frac{3}{2} - \frac{3\sqrt{3}}{2}i; -\frac{3}{2} - \frac{3\sqrt{3}}{2}i\right\}$$

- **3. a.** Déterminer r(F).
 - **b.** Quelle est la nature du polygone ABCDEF?
- **4.** Soit *s* la similitude directe de centre A, de rapport $\frac{1}{2}$ et d'angle $\frac{\pi}{3}$. Soit *s'* la similitude directe de centre E transformant F en C.
 - **a.** Déterminer l'angle et le rapport de s'. En déduire l'angle et le rapport de $s' \circ s$.
 - **b.** Quelle est l'image du point D par $s' \circ s$?
 - **c.** Déterminer l'écriture complexe de s'.
- **5.** Soit A' le symétrique de A par rapport à C.
 - **a.** Sans utiliser les nombres complexes, déterminer s(A') puis l'image de A' par $s' \circ s$.
 - **b.** Calculer l'affixe du point A'. Retrouver alors le résultat du **a.** en utilisant l'écriture complexe de $s' \circ s$.

EXERCICE 3 5 points

Commun à tous les candidats

Soit la suite (u_n) définie pour tout entier naturel n par :

$$u_0 = \frac{1}{2}$$
 et $u_{n+1} = \frac{1}{2} \left(u_n + \frac{2}{u_n} \right)$

1. a. Soit f la fonction définie sur]0; $+\infty$ [par

$$f(x) = \frac{1}{2} \left(x + \frac{2}{x} \right)$$

Étudier le sens de variation de f, et tracer sa courbe représentative dans le plan muni d'un repère orthonormal $\left(0, \overrightarrow{\iota}, \overrightarrow{J}\right)$. (On prendra comme unité 2 cm).

- **b.** Utiliser le graphique précédent pour construire les points A_0 , A_1 , A_2 et A_3 de l'axe $(O; \overrightarrow{\iota})$ d'abscisses respectives u_0 , u_1 , u_2 et u_3 .
- **2. a.** Montrer que pour tout entier naturel n non nul $u_n \ge \sqrt{2}$.

- **b.** Montrer que pour tout $x \ge \sqrt{2}$, $f(x) \le x$.
- **c.** En déduire que la suite (u_n) est décroissante à partir du rang 1.
- d. Prouver qu'elle converge.
- **3.** Soit ℓ la limite de la suite (u_n) . Montrer que ℓ est solution de l'équation

$$x = \frac{1}{2} \left(x + \frac{2}{x} \right)$$

En déduire sa valeur.

EXERCICE 4 6 points

Commun tous les candidats

Première partie

L'espace est rapporté à un repère orthonormal $(0, \vec{i}, \vec{j}, \vec{k})$. On considère :

- les points A(0; 0; 3), B(2; 0; 4), C(-1; 1; 2) et D(1; -4; 0)
- les plans (P_1) : 7x + 4y 3z + 9 = 0 et (P_2) : x 2y = 0.
- les droites (Δ_1) et (Δ_2) définies par leurs systèmes d'équations paramétriques respectifs

$$\left\{ \begin{array}{lll} x & = & -1+t \\ y & = & -8+2t & t \in \mathbb{R} \\ z & = & -10+5t \end{array} \right. \quad \left\{ \begin{array}{lll} x & = & 7+2t' \\ y & = & 8+4t' & t' \in \mathbb{R} \\ z & = & 8-t' \end{array} \right.$$

Pour chaque question, une seule des quatre propositions est exacte. Le candidat indiquera sur la copie le numéro de la question et la lettre correspondant à la réponse choisie. Aucune justification n'est demandée.

Une réponse exacte rapporte 0,5 point; une réponse inexacte enlève 0,25 point; l'absence de réponse est comptée 0 point. Si le total est négatif, la note est ramenée à 0.

	a.	b.	С	d.
1. Le plan (P_1) est	Le plan (ABC)	Le plan (BCD)	Le plan (ACD)	Le plan (ABD)
2. La droite (Δ_1) contient	Le point A	Le point B	Le point C	Le point D
3. Position relative de (P_1) et de (Δ_2)	(Δ_1) est strictement parallèle à (P_1)	(Δ_1) est incluse dans (P_1)	(Δ_1) coupe (P_1)	(Δ_1) est orthogonale à (P_1)
4. Position relative de (Δ_1) et de (Δ_2)	(Δ_1) est strictement parallèle à (Δ_2)	(Δ_1) et (Δ_2) sont confondues	(Δ_1) et (Δ_2) sont sécantes	(Δ_1) et (Δ_2) sont non coplanaires.
5. L'intersection de (P_1) et de (P_2) est une droite dont une représentation paramétrique est	$\begin{cases} x = t \\ y = -2 + \frac{1}{2}t \\ z = 3t \end{cases}$	$\begin{cases} x = 2t \\ y = t \\ z = 3+6t \end{cases}$	$\begin{cases} x = 5t \\ y = 1 - 2t \\ z = t \end{cases}$	$\begin{cases} x = -1 + t \\ y = 2 + t \\ z = -3t \end{cases}$

Deuxième partie

L'espace est rapporté à un repère orthonormai $(0, \vec{\iota}, \vec{\jmath}, \vec{k})$. On considère la droite (D) passant par A(0; 0; 3) et dont un vecteur directeur est \vec{u} (1; 0; -1) et la droite (D') passant par B(2; 0; 4) et dont un vecteur directeur est \vec{v} (0; 1; 1). L'objectif est de démontrer qu'il existe une droite unique perpendiculaire à la fois à (D) et à (D'), de la déterminer et de dégager une propriété de. cette droite.

1. On considère un point M appartenant à (D) et un point M' appartenant à (D'). définis par $\overrightarrow{AM} = a\overrightarrow{u}$ et $\overrightarrow{BM'} = b\overrightarrow{v}$, où a et b sont de nombres réels. Exprimer les coordonnées de M, de M' puis du vecteur $\overrightarrow{MM'}$ en fonction de a et b.

2. Démontrer que la droite (MM') est perpendicuaire à (D) et à (D') si et seulement. si le couple (a; b) est solution du système

$$\begin{cases} 2a+b &= 1\\ a+2b &= -1 \end{cases}$$

- **3.** Résoudre ce système. En déduire les coordonnées des deux uniques points M et M', que nous noterons ici H et H', tels que la droite (HH') soit bien perpendiculaire commune à (D) et à (D'). Montrer que HH' = $\sqrt{3}$ unités de longueur.
- **4.** On considère un point M quelconque de la droite (D) et un point M' quelconque de la droite (D').
 - a. En utilisant les coordonnées obtenues à la question 1, démontrer que

$$MM'^2 = (a+b)^2 + (a-1)^2 + (b+1)^2 + 3.$$

b. En déduire que la distance MM' est minimale lorsque M est en H et M' est en H'.