EXERCICE 1 3 points

Commun à tous les candidats

Dans l'espace rapporté à un repère orthonormal $(0, \vec{i}, \vec{j}, \vec{k})$. On appelle \mathcal{D} la

droite d'équations paramétriques :
$$\begin{cases} x = 1 + 2t \\ y = 2 - t \\ z = -3 - t \end{cases}$$
 et \mathscr{P} le plan d'équation carté-

sienne x + 2y - 3z - 1 = 0.

Dans chacune des lignes du tableau ci-dessous, une seule affirmation est exacte. Le candidat indiquera sur la copie le numéro de la ligne et la lettre correspondant à l'affirmation choisie. Aucune justification n'est demandée. Une réponse exacte rapporte 0,5 point; une réponse inexacte enlève 0,25 point; l'absence de réponse est comptée 0 point. Si le total est négatif, la note est ramenée à 0.

Numéro de la ligne	Affirmation A	Affirmation B	Affirmation C
1.	Le point M de coordonnées $(-1; 3; 2)$ appartient à $\mathcal D$	Le point N de coordonnées (2; -1 ; -1) appartient à \mathscr{D}	Le point R de coordonnées $(3; 1; -4)$ appartient à $\mathcal D$
2.	Le vecteur \overrightarrow{u} de coordonnées (1; 2; -3) est un vecteur directeur de \mathscr{D}	Le vecteur \overrightarrow{v} de coordonnées (-2; 1; 1) est un vecteur directeur de \mathscr{D}	Le vecteur \overrightarrow{w} de coordonnées (3; 1; -4) est un vecteur directeur de \mathscr{D}
3.	${\mathscr D}$ est incluse dans ${\mathscr P}$	${\mathscr D}$ est strictement parallèle à ${\mathscr P}$	∅ est sécante à ℱ
4.	Le point G de coordonnées (1 ; 3 ; −2) appartient à 🎐	Le point G de coordonnées (1; 3; 2) appartient à P	Le point G de coordonnées (1; 3; −1) appartient à 𝒯
5.	Le plan Q_1 d'équation carté- sienne $x+2y-3z+1=0$ est perpendiculaire à \mathcal{P}	Le plan Q_2 d'équation cartésienne $4x - 5y - 2z + 3 = 0$ est perpendiculaire à \mathcal{P}	Le plan Q ₃ d'équation carté- sienne $-3x+2y-z-1=0$ est perpendiculaire à \mathcal{P}
6.	La distance du point T de coordonnées $(-1; -3; 2)$ plan \mathscr{P} est : $\sqrt{14}$	La distance du point T de coordonnées $(-1; -3; 2)$ au plan \mathscr{P} est: 14	La distance du point T de coordonnées (-1; -3; 2) au plan \mathscr{P} est: $2\sqrt{3}$

5 points EXERCICE 2

Commun à tous les candidats

Une association organise une loterie pour laquelle une participation m exprimée en euros est demandée.

Un joueur doit tirer simultanément au hasard, deux boules dans une urne contenant 2 boules vertes et 3 boules jaunes.

Si le joueur obtient deux boules de couleurs différentes, il a perdu.

Si le joueur obtient deux boules jaunes, il est remboursé de sa participation m.

Si le joueur obtient 2 boules vertes, il peut continuer le jeu qui consiste à faire tourner une roue où sont inscrits des gains répartis comme suit :

- sur ¹/₈ de la roue le gain est de 100 €,
 sur ¹/₄ de la roue le gain est de 20 €,
- sur le reste le joueur est remboursé de sa participation m.

On appelle V l'évènement « le joueur a obtenu 2 boules vertes ».

On appelle J l'évènement « le joueur a obtenu 2 boules jaunes ».

On appelle R l'évènement « le joueur est remboursé de sa participation et ne gagne rien».

- 1. Quelques calculs.
 - **a.** Calculer les probabilités P(V) et P(J) des évènements respectifs V et J.

- **b.** On note $P_V(R)$ la probabilité pour le joueur d'être remboursé sachant qu'il a obtenu deux boules vertes. Déterminer $P_V(R)$ puis $P(R \cap V)$.
- **c.** Calculer P(R).
- **d.** Calculer la probabilité de gagner les 100 €, puis la probabilité de gagner les 20 € de la roue.
- **2.** On appelle *X* la variable aléatoire donnant le gain algébrique du joueur c'està-dire la différence entre les sommes éventuellement perçues et la participation initiale *m*.
 - **a.** Donner les valeurs prises par la variable aléatoire *X*.
 - **b.** Donner la loi de probabilité de la variable aléatoire X et vérifier que p(X=-m) est 0,6.
 - **c.** Démontrer que l'espérance mathématique de la variable aléatoire X est $E(X) = \frac{140 51m}{80}.$
 - **d.** L'organisateur veut fixer la participation m à une valeur entière en euro. Quelle valeur minimale faut-il donner à m pour que l'organisateur puisse espérer ne pas perdre d'argent?
- **3.** Un joueur se présente et décide de jouer 4 fois, quels que soient les résultats obtenus.
 - Calculer la probabilité qu'il perde au moins une fois sa mise.
- **4.** On voudrait qu'un joueur ait plus d'une chance sur deux d'être remboursé de sa mise ou de gagner quand il joue une seule fois. On note G cet évènement. Pour cela on garde deux boules vertes dans l'urne mais on modifie le nombre de boules jaunes. On appelle n le nombre de boules jaunes, on suppose $n \geqslant 1$. Calculer la valeur minimale de n pour que la condition précédente soit vérifiée.

EXERCICE 3 5 points

Réservé aux candidats n'ayant pas choisi l'enseignement de spécialité

Le plan complexe est rapporté à un repère orthonormal direct $(0, \overrightarrow{u}, \overrightarrow{v})$ (unité graphique 1 cm).

On considère dans l'ensemble des nombres complexes, l'équation (E) d'inconnue z suivante :

$$z^3 + (-8 + i)z^2 + (17 - 8i)z + 17i = 0.$$

- I. Résolution de l'équation (E).
 - 1. Montrer que –i est solution de (E).
 - **2.** Déterminer les nombres réels *a*, *b*, *c* tels que :

$$z^{3} + (-8+i)z^{2} + (17-8i)z + 17i = (z+i)(az^{2} + bz + c).$$

- 3. Résoudre l'équation (E) dans l'ensemble des nombres complexes.
- II. On appelle A, B et C les points d'affixes respectives 4 + i, 4 i, i.
 - 1. Placer les points sur une figure que l'on complétera dans la suite de l'exercice.
 - **2.** Le point Ω est le point d'affixe 2. On appelle S l'image de A par la rotation de centre Ω et d'angle de mesure $\frac{\pi}{2}$. Calculer l'affixe de S.
 - **3.** Démontrer que les points B, A, S, C appartiennent à un même cercle $\mathscr C$ dont on déterminera le centre et le rayon. Tracer $\mathscr C$.

Asie 2

4. À tout point M d'affixe $z \neq 2$, on associe le point M' d'affixe $z' = \frac{iz + 10 - 2i}{z - 2}$.

- **a.** Déterminer les affixes des points A', B', C' associés respectivement aux points A, B et C.
- **b.** Vérifier que A', B', C' appartiennent à un cercle \mathscr{C}' de centre P, d'affixe i. Déterminer son rayon et tracer \mathscr{C}' .
- **c.** Pour tout nombre complexe $z \neq 2$, exprimer |z' i| en fonction de z.
- **d.** Soit *M* un point d'affixe *z* appartenant au cercle \mathscr{C} . Démontrer que $|z'-i|=2\sqrt{5}$.
- **e.** En déduire à quel ensemble appartiennent les points M' associés aux points M du cercle \mathscr{C} .

EXERCICE 3 5 points

Réservé aux candidats ayant choisi l'enseignement de spécialité

Le but de cet exercice est d'étudier les similitudes directes qui transforment l'ensemble S_1 des sommets d'un carré \mathscr{C}_1 donné en l'ensemble S_2 des sommets d'un carré \mathscr{C}_2 donné.

Le plan complexe est rapporte à un repère orthonormal direct $\mathcal{R} = (0, \overrightarrow{u}, \overrightarrow{v})$, unité graphique 2 cm.

On considère les points A, B, C, D, E, F, G, H d'affixes respectives

$$-\frac{i}{2}$$
, $1-\frac{i}{2}$, $1+\frac{i}{2}$, $\frac{i}{2}$, $1-i$, $3-i$, $3+i$, $1+i$.

 \mathscr{C}_1 est le carré de sommets A, B, C, D et de centre O_1 , \mathscr{C}_2 est le carré de sommet E, F G, H de centre O_2 . S_1 est donc l'ensemble {A, B, C, D} et S_2 l'ensemble {E, F, G, H}.

- 1. Placer tous les points dans le repère \mathcal{R} , construire les carrés \mathcal{C}_1 et \mathcal{C}_2 .
- **2.** Soit h l'homothétie de centre Ω d'affixe -1 et de rapport 2. Donner l'écriture complexe de h et prouver que h transforme S_1 en S_2 .
- **3.** Soit *s* une similitude directe qui transforme S_1 en S_2 et soit *g* la transformation $g = h^{-1} \circ s$.
 - **a.** Quel est le rapport de la similitude s?
 - **b.** Prouver que g est une isométrie qui laisse S_1 globalement invariant.
 - **c.** Démontrer que $g(O_1) = O_1$.
 - **d.** En déduire que g est l'une des transformations suivantes : l'identité, la rotation r_1 de centre O_1 et d'angle $\frac{\pi}{2}$, la rotation r_2 de centre O_1 et d'angle π , la rotation r_3 de centre O_1 et d'angle $-\frac{\pi}{2}$.
 - **e.** En déduire les quatre similitudes directes qui transforment S_1 en S_2 .
- 4. Étude des centres de ces similitudes.
 - **a.** Déterminer les écritures complexes de $h \circ r_1$, $h \circ r_2$, $h \circ r_3$.
 - **b.** En déduire les centres Ω_1 , Ω_2 , Ω_3 de ces similitudes et les placer sur le dessin.

Exercice 4 7 points

Commun à tous les candidats

On s'intéresse dans cet exercice à une suite de nombres rationnels qui converge vers ${\rm e}^2$.

On définit, pour tout entier naturel $n \ge 1$, l'intégrale

Asie 3

$$I_n = \int_0^2 \frac{1}{n!} (2 - x)^n e^x dx.$$

- 1. Calculer I₁.
- **2.** Établir que pour tout entier naturel $n \ge 1$, $0 \le I_n \le \frac{2^n}{n!} (e^2 1)$.
- **3.** À l'aide d'une intégration par parties, montrer que pour tout entier naturel $n \ge 1$, $I_{n+1} = I_n \frac{2^{n+1}}{(n+1)!}$.
- **4.** Démontrer par récurrence que $e^2 = 1 + \frac{2}{1!} + \frac{2^2}{2!} + \dots + \frac{2^n}{n!} + I_n$.
- **5.** On pose, pour tout entier naturel $n \ge 1$, $u_n = \frac{2^n}{n!}$.
 - **a.** Calculer $\frac{u_{n+1}}{u_n}$ et prouver que pour tout entier naturel $n \ge 3$, $u_{n+1} \le \frac{1}{2}u_n$.
 - **b.** En déduire que pour tout entier naturel $n \ge 3$, $0 \le u_n \le u_3 \left(\frac{1}{2}\right)^{n-3}$.
- **6.** En déduire la limite de la suite (u_n) puis celle de la suite (I_n) .
- 7. Justifier enfin que:

$$e^2 = \lim_{n \to +\infty} \left(1 + \frac{2}{1!} + \frac{2^2}{2!} + \dots + \frac{2^n}{n!} \right).$$

Asie 4